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SUMMARY 

Mobile phase mass transfer terms are derived or rederived for various 
geometries of porous material in which the mobile phase is stagnant. The results 
are tabulated and compared with those of other workers in Table I. A new, simpler 
and more rigorouL, c equation is given for plate height in a por’ous layer open tubular 
column. Stationary phase mass transfer terms are increased by a factor, f, when the 
stationary phase must be reached through stagnant fluid. In these, circumstances 
the mobile phase mass transfer term for the moving stream of mobile phase is also 
changed so that where the relative sample velocity R occurs in such terms it must be 
replaced by t$R or, equivalently, the column capacity ratio Iz must be replaced by 
GOL~\Y’S “virtual F’, kv given by k, = (I -t_ Jc ---$)/qb. . 

GIDDINGS’ non-equilibrium theory’ will derive the mass transfer C term in 
the equation for “plate height”, H, for almost any stationary phase or combination 
of stationary phases. It has been used to derive a great many. The purpose of this 
paper is to use these solutions to derive the C terms for stationary portions of the 
mobile phase; that is, for stagnant mobile phase in porous layers and particles such 
as porous layer open tubular columns, porous layer beads, porous particles imperme- 
able to flow and gel filtration media. This will confirm some equations obtained by 
other routes and establish the limitations of others. 

The general expression for stationary phase mass transfer in bodies of liquid 
stationary phase is (ref. I, p. 146-149) : 

where B is the mobile phase velocity averaged over the entire mobile phase, stagnant 
or moving, n is the fraction of the sample in the mobile phase, q is a geometrical 
factor describing the shape of the liquid phase, dr is the depth of the liquid phase 
at its deepest p&t, and Dr is the diffusivity of the sample in the liquid. 

When applyin, Q this to .a ‘porous mass containing stagnant mobile phase, the 
porous mass is considered to be the stationary phase analogous to the liquid phase 
in eqn. I. Thus the velocity must be the velocity outside the porous mass (iis,, the 
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interparticle velocity for a column of porous particles), Vg, and the sample fraction, 
R, must be the fraction of the sample outside the porous mass, Xi. Hence : 

cm5 = 4RlO - R,)d2v, 

DP (2) 

where C, is the mass transfer coefficient for a mobile phase, d is now the depth 
of the porous mass at its deepest point and Dr is the diffusivity of the sample in the 
porous mass. If velocities are measured using an unretained sample’ and dividing 
the column length by its elution time, the result is the mean velocity, B, averaged 
over all the mobile phase, moving or stagnant (except in the case of gel filtration as 
discussed later). If the fraction of the mobile phase which is outside the porous mass 
is called #J, then this average is fii$ = fi. Similarly Rg/R = C$ and the Rg in eqn. 2 

may be replaced by the more measurable #JR and the ‘u( by 6&b, 
The diffusivity in the porous mass, D,, must be replaced by more available 

constants. These may be obtained by applying Fick’s law for flux, J, of sample 
through a plane of unit area: 

J Dpt$ =- (3) 

where cp is the concentration in the porous mass at a distance z from the surface, 
Diffusion actually takes place only in the mobile phase and we may thus re-write 
this for a unit plane of pure mobile phase: 

J -=- acm 
% Dmx (4) 

where ep is the void fraction in the porous layer and c ,,, is the concentration in the 
mobile phase at a depth z within the layer. Equating eqns. 3 and 4 gives: 

Now : 

CP = C&J -I- cd1 -“p) 6) 
where c8 is the concentration in the stationary phase (mass/volume) including any 
solid support. Putting c S = c,K where IS: is the partition cocficient, this may be 
rearranged and differentiated to give: 

and inserting this into eqn. 5 gives: 
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C TERMS IN POROUS TAYERS ANT) PARTICLES 3 

This equation can be put into a number Of other forms to show equivalence 
to treatments of the problem by other authors. Thuds: 

k( 
r 1 - EJ --- 3 

% 
J+=~$??K+!$ (9) 

mp s mp mp m p 

where zIs and Zlmp are the volumes of adsorbent and of mobile phase within the porous 
mass and zvs and ze/mp are the masses of sample adsorbed and in the mobile ‘phase 
within the porous mass. This leads to CRANK’S solution2: 

D, = Dm 

1 -I- wslwmp, (10) 

although it is not equivalent to the equation given in ref. 3 as an interpretation of 
CRANK, which I have been unable to rederive. 

It is equivalent to GOLAY’S expression” Dp ‘= D,/l&r (though misprinted 
D1/ICcrf) only if, as GOLAY assumes, the volume. of the true stationary phase is a 
negligible fraction of the total volume of the sorbent bed, Le., ep = 1.0. This may be 
shown by writing : 

K 
concn. in total sorbent 

= -’ tV~ -I- wmp wmp 
cff concn, in gas = 0, -f- urn7 I 

-C 
to, + Wmp 

D,, W mP 

-=,+$L 
mp 

which is the equivalent of eqn. 10. 
It is useful to put these expressions into a form where the retention is expressed 

as k rather than I’ so as to make them directly applicable to all forms of sorption and 
not merely to adsorbents. Thus putting 

K( I - Ep) -= --= K ,“s jc Orn OS 

@% mp Vs vmp 

Z-g-$ 

into eqn. 8 and rearranging gives: 

DP 
_ (1 - +JDm = R(r - +lDtn 

I-&-l-k- I-d,R 

0 0 

(12) 

In these two forms the equation is true not only for solid aclsorbents but for 
supported adsorbents or stationary liquids, since the extent of partition is specified 
only by relative retention times. They need, however, to be multiplied by an obstruc- 
tion factor, yp, to allow for the tortuous and constricted path by which the sample 
must diffuse a unit diktance into the porous mcass. Thus finally: , 

D, = (1 - hG4ll 
r-qfJ4-z-5 

R(l - 4)YpDm 

I-@R 03) 

This is the same equation as derived by HAWK& by a more questionable method. 
Substituting eqn. 13 into eqn. 2 and putting vi = o’/$ and Rc = $di! as shown above 
yields the general equation for Cm in terms of experimental parameters: 

04) 
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For spherical globules of stationary phase GIDDINGS has shown (ref. I, p. 147) that 

Q = 1/30 and entering this value yields GIDDLNGS’ equation (ref. I, p. 158 and 
ref. 6) for mass transfer in the mobile phase of porous spherical particles: 

c, = (I - $Rj2d,,’ 

so0 -79Y&l 
05) 

SrR AND RIJNDERS’ form7 is readily derived from this by putting R = I/(I -/- Jz). 

MASS TRANSIXR IN TI-IE TRUE STATIONARY PI-IASE 

These results are unaffected if there is significant resistance to mass transfer 
in or on the true stationary phase (that is the adiorbent surface or stationary liquid). 
This may be shown using GIDDINGS’ treatment (ref. I, p. 169) for a sphere of station- 
ary phase (,paralleling our stagnant mobile phase) with adsorption sites uniformly 
distributed within it. The mass transfer at the adsorption sites appears as a separate 
additive term while the liquid stationary phase term appears as: 

WI C, = --- - R)dP2 

300 -f)Q 
(JG) 

where f is the fraction of the sample molecules in the porous mass which are held on 
the true stationary ph=ase. The quantity (I -J’) is thus ~,~/(w~,,n -I_ ZU,) = I/( I + ze+/ze/,& 
and eqn. I% is thus identical with that obtained using the treatment described here 
starting with eqn. IO. Clearly a different geometry cannot affect this conclusion and 
hence it is universally true that mass transfer at the sorbent does not affect the. 
equation for mass transfer in the stagnant fluid. 

However, the reverse is not true. Mass transfer at the sorbent is affected hy 
passage through the stagnant mobile phase. GIDDINGS (ref. I, p. 169) deals with 
this term for the same particular case of mass transfer at adsorption sites within a 
sphere of stationary liquid phase. The resulting expression is exactly f times the 
regular expression for adsorption kinetics where there is no intervening fluid to 
complicate matters, where f is the fraction of those sample molecules in the porous 
medium that are actually sorbed. 

To determine whether this is a general rule it was necessary to review GIDDINGS’ 
arguments, particularly with respect to liquid stationary phase dispersed in the porous 
mass and with respect to stationary phase which is non-uniformly dispersed. GIDDINGS 
(ref. I, p. &Lr2g) deals with the general case of transfer among three states (in our 
case the mobile, stagnant, and stationary phases) and derives a stationary phase 
expression (ref. I, p. J.zg, eqn. 4.2-48) which may be rearranged to I;I = zR(1 -R) 

fW3,2 where lz,, 2 is the rate constant for desorption from the third (stationary) to the 
second (stagnant) state. This is exactlyftimes the exactly analogous expression (ref. I, 
p. 126, eqn. 4.2-37) derived specifically for adsorption on surfaces in contact with 
the mobile phase, However, K2.2 is a general expression independent of the nature 
of the stationary phase. In the case of a liquid stationary ph,ase k2.2 is diffusion 
controlled but the form of the equation is still the same (i.e., it is dependent on R( 1 -R)v 
as has been shown many times) and .the analogy is complete. Since the factor f is 
thus shown to apply Lo t.he genercal case and has been shown to apply specifically 
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e TERMS IN POROUS LAYERS AND PARTICLES 5 

to adsorption at the bottom of a liquid statio,nary phase (ref. r, p. 129) and to uni- 
formly distributed adsorption sites (ref. I, p. 169) it- is presumably applicable to any 
mode of distribution of sorptive sites. 

This produces the theorem, “The expression for resistance to mass transfer in 
or on a stationary sorbent phase must be multiplied by f whenever the sorbent phase 
must be reached through a stationary Aui,d, whether this is a liquid stationary phase 
or merely stagnant mobile phase”. * 

Fortunately j is usually near unity so that there is little error in ignoring it, 
as is usual, except at low values of k (i.e., for most purposes, when Iz < 2). 

EFFECT ON MASS TRANSFER IN THE FLOW STRJ3RM 

Where the Cm term for mass transfer in the flow stream is retention dependent, 
the unsorbed fraction R must be replaced by c,bR as before; This is equivalent to 
GOJAY’s” “virtual k”, lzV, given by (I + h)/( I Jr k,) = (16. 

The open tubular column has the only known equation for Cm is a flow stream 
with a well understood retention depenclence. Thus for a porous layer open tubular 
column the flow stream mass transfer is: 

cm = (6@R2 - 16d,R -k I I) (I’ - d)2/24D, 071 

UNIFORM POROUS LAYERS 

In porous layer open tubular columns and in columns of porous layer beads, 
there is a more or less uniform porous layer which may be treated by this method 
putting q = 2/3 so that: 

cm 2(I - @R)=d2 . 

= G-=-_m : . 
(18) 

This is also identical with an equation previously derived by HAWKES’~ more ques- 
tionable procedure. It is not identical with those derived by GOLAY+~ since GOLAY 
used approximations which prevent algebraic identity and create error when GE/Y 
is significant. They can be compared by writing the full equations from both treat- 
ments and correcting the misprint rzc/.Q to r2u/DB in GOLAY’S eqn. 6 (ref. 8). 

GAl = (W=R= 
I== 

- r 6q5R -t- I I) + 2(1 - t$R)=d=/r= 

24 30 - $)Y, 

cmDm - I -I- 6k -I- rrk= d 1. 

r= (I -i- k)2 

-1- 8 -I- 3zk cpd -1- 8k2 

(I -l-k)= -F (I -l- k)= ).Ep?‘p g 

(19) 

(20) 

where Y is the radius of the flowpath, not of the column as a whole. It is readily 
shown by putting R = I/(I -I- A) that when d = o these are identical. Otherwise 
some simplifying assumptions are needed. Putting 1-4 = (Z&&~/(X + P&,/Y) ‘w 
~G~Q/Y (i.e., assuming z&,/r 4 I), separating the first term of eqn. 19 into two terms, 
(6X9-r6R + x1)/24 -t_ [6(1-#~~)R~-~6(1-#)/~]/24, assuming I + 96 = 2, putting R 
= I/(I + lz), and ignoring terms in d2/v2 in the expansion of the ‘last term, eqn. 20 
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follows from eqn. 19. As eqn. Ig involves none of these assumptions and is also 

simpler in form it is to be preferred, although the simplicity is reduced when 91, is 

substituted by I/(X -t_ ~&I,/Y). Putting E R = yp = I into eqn. 20 produces GOLAY’S 

simplified equationd. 

The full equation for plate height in an open tubular column is thus: 

w 2Dm 
=0+ 

(6tj2R 2 - rG$R + I I) (I’ - &2 2(I - if~R)ci2 

+ 3(I - &r,D, + 

Mw - R).fn’:r2~ 

24&, DI I 
V 

. . . . 

(20 
LIQUID-LIQUID C~IROMATOGI~API-~ WITH POROUS I’ARTICLES 

GIDDINGS has shown (ref. I, p. 151) that’the optimum itationary phase loading 

in liquid-liquid chromatography is one which completely saturates the particle. 

In this case eqn, I applies with only the addition of the tortuosity factor, y,,. For 

spherical particles it is thus : 

c, = WI - W: 
~QY,@I 

(22) 

and for porous layer beads it is: 

Cl = 
2R(1 - R)d2 

3YIPI 
(23) 

EXCLUSION CNROMATOGRAPI-IY WITHOUT ADSORPTION 

The following argument will assume that the diffusion coefficient D, is constant 

throughout a particle of exclusant, There will be some error here for at the limits of 
‘-. ““. . . . .._.. -a_. . I. i”-. 

its penetration the sample molecule may be in a’space wIthdimensions .less than Its 

mean free path. It is assumed that it will rarely be in such places so that the effect 

is small, but there is a possibility that this is wholly untrue. In this case a much more 

complex theory of zone broadening will be needed. A different theory will also be 

needed for non-rigid gels if it is true that diffusion is hindered by the molecular 
strands of the gel which must be moved aside for the sample to penetrate. 

Unlike other systems considered in this paper, the velocity of an unretained 
sample is VI because such samples have large molecules that will not enter the particle. 
Wence B = VI and similarly R = Rr. Since there is no adsorption, D,, = J+&,,. 
Applying these to eqn. 2 and putting q = 1130 gives the C, term for spherical par- 
ticles as: 

which is identical with the equation 

EXCLUSION CWROMATOGRAI’HY WITH 

given by GIDDINGS~. 

ADSORPTION 

(24) 

It has been shownlop I1 that the exclusion mechanism is often complicated by 
adsorption. This ealso complicates the C m term. Since the large-molecule sample used 
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c TERMS IN POROUS LAYERS AND PARTICLES 7 

to determine fi is presumably insignificantly adsorbed, it remains true that VI = v’ 
and RI = R. However, D,, must be recalculated starting from eqn. 8 which is un- 
affected We may also use the relation K(L-Q,)/E~ = k’/(l-+) providing we define 
k’ as the ratio of mass of sample adsorbed to mass unadsorbed without any reference 
to ratios of elution times. No experimental method of quantitatively determining k’ 
with any confidence or of relating it to Rg has yet occurred to the author so the formula 
cannot be expressed in terms of available experimental quantities and it is left as: 

D, = Din 
I -I- V/(1 - cfi 

and hence : 

cm s Rio - R,) [I + Id/( I - (I,)]d; 
3OYpRn 

(25) 

(26) 

Thus if adsorption is substantial C ,,, cc 1~’ and the degree of adsorption has a direct 
effect on the zone spreading. 

TABLE I 

SUMMARY OP EQUATIONS OBTAINED 

Medium Equation Agveemenl wuillr 
refevcnces 

Porous 

Porous 

Porous 

layer open tub0 Cm = 

iayck q+crical pnrticlcs Cm = 

spherical particles con- 

(Gt$a.R~-,G@? _1- II) (r-d)a G z(I-t$IZ)ada 

24&n 3(1-96)&T QTl 4* ’ 
-moderate 

z ( x-cjJ?)ada -- 
3(x-tb)YIam 

5 -prcciso 

Non-adsorbing spherical gel 
filter particles 

Cm = 
R(r-R)d,,a 

3oYpDm 

Adsorbing spherical gel 
filter particlcs 

Cm = 
Rt(~-ZQ) [I -I- Iz’/(r-&ld,? 

3OYAn 

6 -precise 
3 -disagrees 

7 -precise 

- 

Porous spherical particles fillccl 
completely with stationary phase 

C, = R( I-n)dti2 - 
3oYPa 

SYMBOLS 

CP concemration in the porous mass 
cm concentration in the mobile phase 
CS concentration in the stationary phase 
C mass transfer coefficient 
Cr liquid phase mass transfer coefficient 
C,, mass transfer c0effkian.t for mobile phase 
d depth of porous mass at its deepest point 
dl depth of liquid phase at its deepest point 
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particle diameter 
diffusivity of sample in liquid phase 
diffusivity of sample in mobile phase 
diffusivity of sample in the porous mass 
fraction of the part of the sample within the porous bed which is llelcl by 

the true stationary phase 
zone dispersion rate (“plate height”) 
mass diffusing through a unit plane in unit time 
column capacity ratio, mass sample sorbed/mass sample in mobile phase 
mass sample adsorbed on gel matrix,/mass unadsorbed 
partition coeffkient, mass sample per ml of sorbcnt/mass sample per ml of mobile 
phase 
geometrical factor 
geometrical factor for a liquid stationary phase within the porous bed 
radius of open tubular column 
fraction of sample in the mobile phase, stagnant or moving 
fraction of sample outside the porous mass 
mobile phase velocity 
mobile phase velocity averaged over tire entire mobile phase 
interstitial velocity or average mobile phase velocity outside the porous mass . 
volume of solid adsorbent 

vmp volume of (stagnant) mobile phase within the porous mass 
zws weight of sample held to the true stationary phase 
wmp weight of sample held in the mobile phase within the porous mass 
I distance from the surface of the porous bed 
a ratio of bed depth to radius of open tubular column 

YP obstruction factor for diffusion in the porous mass 
E,, fraction of the volume of the porous bed occupied by (stagnant) mobile phase 
d, fraction of the mobile phase which is outside the porous bed 
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