JOURNAL OF CHROMATOGRAPHY I
CHROM. 5975

MASS TRANSFER TERMS IN POROUS LAYERS AND PARTICLES

STEPHEN J. HAWKES .
Oregon Stale Universily, Covvallis, Oreg. 97331 (U.S.A4.)

(First received October 5th, 1971 ; revised manuscript received January 7th, 1972)

SUMMARY

Mobile phase mass transfer terms are derived or rederived for various
geometries of porous material in which the mobile phase is stagnant. The results
are tabulated and compared with those of other workers in Table I. A new, simpler
and more rigorous equation is given for plate height in a porous layer open tubular
column. Stationary phase mass transfer terms are increased by a factor, f, when the
stationary phase must be reached through stagnant fluid. In these circumstances
the mobile phase mass transfer term for the moving stream of mobile phase is also
changed so that where the 1elative sample velocity R occurs in such terms it must be
replaced by $R or, equivalently, the column capacity ratio & must be replaced by
GoLAY's ‘‘virtual 2", ky given by ky = (1 -+ &k —¢p)/p.

GIDDINGS' non-equilibrium theory! will derive the mass transfer C term in
the equation for ‘‘plate height”, H, for almost any stationary phase or combination
of stationary phases. It has been used to derive a great many. The purpose of this
paper is to use these solutions to derive the C terms for stationary portions of the
mobile phase; that is, for stagnant mobile phase in porous layers and particles such
as porous layer open tubular columns, porous layer beads, porous particles imperme-
able to flow and gel filtration media. This will confirm some equations obtained by
other routes and establish the limitations of others.

The gencral expression for stationary phase mass transfer in bodies of llquld
stationary phase is (ref. 1, p. 146-149): :

_ 2= ‘
C/p = qR(1 DIR)d, 1) | | %))

where 7 is the mobile phase velocity averaged over the entire mobile phase, stagnant
or moving, R is the fraction of the sample in the mobile phase, q is a geometrical
factor describing the shape of the liquid phase, d; is the depth of the liquid phase
at its deepest point, and D is the diffusivity of the sample in the liquid.

When applying this fo.a porous mass containing stagnant mobile phase, the
porous mass is considered to be the stationary phase analogous to the liquid phase
in eqn. 1. Thus the velocity must be the velocity outside the porous mass (i.e., the
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interparticle velocity for a column of porous particles), v, and the sample fraction,
R, must be the fraction of the sample outside the porous mass, Ry. Hence:

qR,(1 — Ri)dzvl

Cob =

where Cp, is the mass transfer coefficient for a mobile phase, 4 is now the depth
of the porous mass at its deepest point and Dy, is the diffusivity of the sample in the
porous mass. If velocities are measured using an unretained sample and dividing
the column length by its elution time, the result is the mean velocity, , averaged
over all the mobile phase, moving or stagnant (except in the case of gel filtration as
discussed later). If the fraction of the mobile phase which is outside the porous mass
is called ¢, then this average is fip = . Similarly RyR = ¢ and the R; in eqn. 2
may be replaced by the more measurable ¢R and the v; by &/¢.

The diffusivity in the porous mass, Dp, must be replaced by more available
constants. These may be obtained by applying Fick’s law for flux, J, of sample
through a plane of unit area:

oc
J=—Dp‘5z_p 3)

where ¢p is the concentration in the porous mass at a distance z from the surface.
Diffusion actually takes place only in the mobile phase and we may thus re-write
this for a unit plane of pure mobile phase:

J oc
= Dm‘gf «@

where ¢gp is the void fraction in the porous layer and ¢y, is the concentration in the
mobile phase at a depth z within the layer. Equating eqns. 3 and 4 gives:

ac acl“

Dy 5z = Dt 5 )
Now:
Cp = CmEp + (1 —E&,) (6)

where c¢g is the concentration in the stationary phase (mass/volume) including any
solid support. Putting ¢s = cmK where K is the partition coefficient, this may be
rearranged and differentiated to give:

oc cc
—a—z‘-’ = [e, + K1 — ¢&,)] -5-2'1‘ (1)~

and inserting this into eqn. 5 gives:

P 1 + K1 —¢g,)/e,

D (8)
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C TERMS IN POROUS LAYERS AND PARTICLES 3

This equation can be put into a number of other forms to show equivalence
to treatments of the problem by other authors. Thus:

Ug _ﬁgvmp Vg — Wy

K(l —Ep)

cp vmp Vg me vmp me

9

where vy and vyp are the volumes of adsorbent and of mobile phase within the porous
mass and wg and wpp are the masses of sample adsorbed and in the mobile phase
within the porous mass. This leads to CRANK’s solution?:

— Dm

Do=17% Wl Winp (1)
although it is not equivalent to the equation given in ref. 3 as an interpretation of
CraNEK, which I have been unable to rederive.

It is equivalent to GoOLAY’s expression? Dp = Dpy/Kepr (though misprinted
Dy/Kep) only if, as GoLay assumes, the volume, of the true stationary phase is a
negligible fraction of the total volume of the sorbent bed, 7.¢., gp = ¥.0. This may be
shown by writing: :

W

chf= -

: 1+
concn. in gas Vg + Ump

Vmp Wnp Winp

concn. in total sorbent _ w,+ wp,, / Wmp _ Ws + Wip _

which is the equivalent of eqn. ro.
It is useful to put these expressions into a form where the retention is expressed

as k& rather than K so as to make them directly applicable to all forms of sorption and
not merely to adsorbents. Thus putting

K('_E")=Kvs=khvs=lf(/) (11)

&p Ump Vs Ump
into eqn. 8 and rearranging gives:

_(I - (/))Dm_R(I—(I))Dm
bo=r v k= T T=9R (12)

In these two forms the equation is true not only for solid adsorbents but for
supported adsorbents or stationary liquids, since the extent of partition is specified
only by relative retention times. They need, however, to be multiplied by an obstruc-
tion factor, yp, to allow for the tortuous and constricted path by which the sample
must diffuse a unit distance into the porous mass. Thus finally:

_ (1 = P)ypDy __ R(1 — ¢)ypDyy,
Dy = =T 1= R (13)

This is the same equation as derived by HAWKES®? by a more questionable method.
Substituting eqn. 13 into eqn. 2 and putting v; = b/¢ and R; = ¢R as shown above
yields the general equation for Cy, in terms of experimental parameters:

_ 901 — dRY’d? |
- (I - (b))’po : (14)

Cm
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For spherical globules of stationary phase GIpDINGS has shown (ref. 1, p. 147) that
q = 1/30 and entering this value yields GIDDINGS' equation (ref. 1, p. 158 and
ref. 6) for mass transfer in the mobile phase of porous spherical particles:
_ (- (/’R)zdpz
" 30(I - (/’)prm
SiE AND RiJNDERS’ form? is readily derived from this by putting R = 1/(1 4 &).

(15)

MASS TRANSFER IN THE TRUE STATIONARY PHASE

These results are unaffected if there is significant resistance to mass transfer
in or on the true stationary phase (that is the adsorbent surface or stationary liquid).
This may be shown using GIDDINGS’ treatment (ref. 1, p. 169) for a sphere of station-
ary phase (paralleling our stagnant mobile phase) with adsorption sites uniformly
distributed within it. The mass transfer at the adsorption sites appears as a separate
additive term while the liquid stationary phase term appears as:

é_RU—RMf
= 30(1 — f)D, -

where f is the fraction of the sample molecules in the porous mass which are held on
the truestationary phase. The quantity (1 — f) is thus @Wmp/(@mp + @) = 1/(I 4 @Ws/@Wmp)
and eqn. 6 is thus identical with that obtained using the treatment described here
starting with eqn. 10. Clearly a different geometry cannot affect this conclusion and
hence it is universally true that mass transfer at the sorbent does not affect the
equation for mass transfer in the stagnant fluid.

However, the reverse is not true. Mass transfer at the sorbent is affected by
passage through the stagnant mobile phase. GIDDINGS (ref. I, p. 169) deals with
this term for the same particular case of mass transfer at adsorption sites within a
sphere of stationary liquid phase. The resulting expression is exactly f times the
regular expression for adsorption kinetics where there is no intervening fluid to
complicate matters, where f is the fraction of those sample molecules in the porous
medium that are actually sorbed.

To determine whether this is a general rule it was necessary to review GIDDINGS’
arguments, particularly with respect to liquid stationary phase dispersed in the porous
mass and with respect to stationary phase which is non-uniformly dispersed. GIDDINGS
(ref. 1, p. 128-120) deals with the general case of transfer among three states (in our
case the mobile, stagnant, and stationary phases) and derives a stationary phase
expression (ref. 1, p. 129, eqn. 4.2—48) which may be rearranged to H = 2R(1 —R)
Jv/kg, o where k4,5 is the rate constant for desorption from the third (stationary) to the
second (stagnant) state. Thisis exactly ftimes the exactly analogous expression (ref. 1,
p. 126, eqn. 4.2-37) derived specifically for adsorption on surfaces in contact with
the mobile phase. However, k3 s is a general expression independent of the nature
of the stationary phase. In the case of a liquid stationary phase %3, is diffusion
controlled but the form of the equation is still the same (Z.¢., it isdependent on R(1 — R)»
as has been shown many times) and the analogy is complete. Since the factor f is
thus shown to apply to the general case and has been shown to apply specifically

(16)
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C TERMS IN POROUS LAYERS AND PARTICLES 5

to adsorption at the bottom of a liquid stationary phase (ref. r, p. 12¢) and tc uni-
formly distributed adsorption sites (ref. 1, p.16g) it is presumably applicable to any
mode of distribution of sorptive sites. '

This produces the theorem, ‘‘“The expression for resistance to mass transfer in
or on a stationary sorbent phase must be multiplied by f whenever the sorbent phase
must be reached through a stationary fluid, whether this is a liquid stationary phase
or merely stagnant mobile phase’’.

Fortunately f is usually near unity so that there is little error in ignoring it,
as is usual, except at low values of & (¢.¢., for most purposes, when & < 2).

LEFFECT ON MASS TRANSFER IN THE FLOW STREAM

Where the Cr term for mass transfer in the flow stream is retention dependent,
the unsorbed fraction R must be replaced by ¢R as before. This is equivalent to
GoLAY’s? “'virtual &7, ky, given by (1 - k)/(x 4 &y) = ¢. '

The open tubular column has the only known equation for Cp, is a flow stream
with a well understood retention dependence. Thus for a porous layer open tubular
column the flow stream mass transfer is:

C,, = (6¢2R? — 16¢R + 11) (r — d)*/24D,, (17)
UNIFORM POROUS LAYERS

In porous layer open tubular columns and in columns of porous layer beads,
there is a more or less uniform porous layer which may be treated by this method
putting ¢ = 2/3 so that:

_ 2(1 — pRY?d>
- 3(I - (l))Vpo

This is also identical with an equation previously derived by HAWKES’S more ques-
tionable procedure. It is not identical with those derived by GoLav%8 since GoLAY
used approximations which prevent algebraic identity and create error when d/»
is significant. They can be compared by writing the full equations from both treat-
ments and correcting the misprint »u/Dg to »2u/Dg in GOLAY’S eqn. 6 (ref. 8).

(18)

Chm

CinD _ (6°2R? — 16¢pR + 11) _ 2(1 — PpR)*d?/r?

r? 24 30— @), (19)
CoD, 1 +6k+ 11k> 8- 32k e,d 8k? d |1
2 2 2 + z >a (20)
» 1+ k) (Q+ kP T (14 k)P rey,S 23

where 7 is the radius of the flowpath, not of the column as a whole. It is readily
shown by putting R = 1/(x - %) that when 4 = o these are identical. Otherwise
some simplifying assumptions are needed. Putting 1-¢ = (2dey/7)/(T + 2dep/r) =«
2dep/7 (i.e., assuming 2dep/? <€ 1), separating the first term of eqn. 19 into two terms,
(6R2~I6R - 11)/24 -+ [6(1-¢p2)R2~16(1-p)k]/24, assuming I + ¢ ~ 2, putting R
= 1/(x -+ k), and ignoring terms in 42/72 in the expansion of the last term, eqn. 20
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follows from eqn. 19. As eqn. 1g involves none of these assumptions and is also
simpler in form it is to be preferred, although the simplicity is reduced when ¢ is
substituted by 1/(x -+ 2dep/7). Putting ¢p = yp = 1 into eqn. 20 produces GoLAY's
simplified equation?.

The full equation for plate height in an open tubular column is thus:

_ 2D, , J(64>R? — 16¢R + 11) (r — d)® | 2(1 — pR)?® | q,R(1 — R)fdir?]
He—7 { 24D, RRT e ) o " D, v
(21)

LIQUID-LIQUID CHROMATOGRAPHY WITH POROUS PARTICLES

GIDDINGS has shown (ref. 1, p. 181) that the optimum étationary phase loading
in liquid-liquid chromatography is one which completely saturates the particle.
In this case eqn. 1 applies with only the addition of the tortuosity factor, y,. For
spherical particles it is thus:

__ R(1 — R)d?

2
3°va| ( 2)

and for porous layer beads it is:

__2R(1 — R)d?
3val

C (23)

EXCLUSION CHROMATOGRAPHY WITHOUT ADSORPTION

The following argument will assume that the diffusion coefficient Dy, is constant
throughout a particle of exclusant. There will be some error here for at the limits of
its penetration the sample molecule may be in a spacé With dimensions less than’its’
mean free path. It is assumed that it will rarely be in such places so that the effect
is small, but there is a possibility that this is wholly untrue. In this case a much more
complex theory of zone broadening will be needed. A different theory will also be
needed for non-rigid gels if it is true that diffusion is hindered by the molecular
strands of the gel which must be moved aside for the sample to penetrate.

Unlike other systems considered in this paper, the velocity of an unretained
sample is v; because such samples have large molecules that will not enter the particle.
Hence # = v; and similarly R = Ry. Since there is no adsorption, D = ypDm.
Applying these to eqn. 2 and putting q = 1/30 gives the Cy, term for spherical par-
ticles as: -

_R(1 - R,)d,z,

m 367, Dy, (24)

which is identical with the equation given by Gippings®.

EXCLUSION CHROMATOGRAPHY WITH ADSORPTION

It has been shownl0. 1! that the exclusion mechanism is often complicated by
adsorption. This also complicates the Cpy term. Since the large-molecule sample used
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C TERMS IN POROUS LAYERS AND PARTICLES 7

to determine ¥ is presumably insignificantly adsorbed, it remains true that v; ==
and R; = R. However, Dj must be recalculated starting from eqn. 8 which is un-
affected. We may also use the relation X (1—ep)/ep = %&'/(1 —¢) providing we define
k' as the ratio of mass of sample adsorbed to mass unadsorbed without any reference
to ratios of elution times. No experimental method of quantitatively determining %’
with any confidence or of relating it to R; has yet occurred to the author so the formula
cannot be expressed in terms of available experimental quantities and it is left as:

D,
S irpny s 23)
and hence:
C. =R =R)[1 + K1 = $)d} (26)

30y,Dp,

Thus if adsorption is substantial Cyy oc 2’ and the degree of adsorption has a direct
effect on the zone spreading.

TABLE I
SUMMARY OF EQUATIONS OBTAINED

Medium Equation 4 Agreemeni wilth
vefevences
(62 R2~16pR - 11) (r~d)? 2(1—¢h )22
Porous layer open tube Cm = . , 7—moderate
! P " 24Dm 3(x~¢))yp? Dm 47

S ) . _ 2(1—¢pR)2d? .
Porous layer:spherical particles Cy = 3(-#)7pDm 5 —precise
Porous spherical particles con- (1= R)%d e .
e T ST E A R S LI ¢ e v o e o3P EDT 6 —precise
i;;:::;gg mainty-stagnant mobile - Cn 30(1—)yeDm . 3 —disagrees
Non-adsorbing spherical gel _ R(1—-R)dp® _ .
filter particles Cm = 30¥pDm 7 —precise
Adsorbing spherical gel Cr = RiG=Ry[r + k[ (1~h) 1dp? L
filter particles m= 309pDm
Porous spherical particles filled . _ R (1—-R)dp? _
completely with stationary phase ~! = 3oyp Dy

SYMBOLS

¢p concentration in the porous mass

¢m concentration in the mobile phase

ce concentration in the stationary phase

C mass transfer coefficient

C1 liquid phase mass transfer coefficient

Cm mass transfer coefficient for mobile phase
d  depth of porous mass at its deepest point
dy depth of liquid phase at its deepest point
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8 S. J. HAWKES

dp particle diameter

Dy diffusivity of sample in liquid phase

Dy diffusivity of sample in mobile phase

D, diffusivity of sample in the porous mass

f  fraction of the part of the sample within the porous bed which is held by
the true stationary phase

H  zone dispersion rate (‘‘plate height”)

J  mass diffusing through a unit plane in unit time

%k column capacity ratio, mass sample sorbed/mass sample in mobile phase

k' mass sample adsorbed on gel matrix/mass unadsorbed

K partition coefficient, mass sample per ml of sorbent/mass sample per ml of mobile
phase

q geometrical factor

¢1 geometrical factor for a liquid stationary phase within the porous bed

r  radius of open tubular column

R fraction of sample in the mobile phase, stagnant or moving

R; f{fraction of sample outside the porous mass

v  mobile phase velocity

# mobile phase velocity averaged over the entire mobile phase

vy interstitial velocity or average mobile phase velocity outside the porous mass

vg volume of solid adsorbent

vmp volume of (stagnanti) mobile phase within the porous mass

wy weight of sample held to the true stationary phase

wmp weight of sample held in the mobile phase within the porous mass

z  distance from the surface of the porous bed

e« ratio of bed depth to radius of open tubular column

yp obstruction factor for diffusion in the porous mass

gp fraction of the volume of the porous bed occupied by (stagnant) mobile phase

¢ fraction of the mobile phase which is outside the porous bed
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